Also, GC analysis revealed that 2 was efficiently converted back to its precursors, $1\left(81 \%, \mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{2}, \mathrm{BF}_{3} \cdot \mathrm{EE}\right.$ (0.16 equiv), CHCl_{3} or $77 \%,\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}_{2} \mathrm{SiMe}_{2}, \mathrm{BF}_{3} \cdot \mathrm{EE}$ (0.4 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{6,13}$ and 3 ($93 \%, \mathrm{CH}(\mathrm{OMe})_{3}$, TsOH or $100 \%, \mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{MeOH}$, Clay K 10). ${ }^{14}$ Standard methodology (diol, $\mathrm{TsOH}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux) produced the cyclic acetals ($5(76 \%$), 6 (72%)). For 6, MMX calculations predict a strong preference for the TIPS ${ }_{\text {eq }}$ chair conformation ($>6 \mathrm{kcal} / \mathrm{mol}$) which is revealed in its ${ }^{1} \mathrm{H}$ NMR through distinctly separated signals for each of the ring hydrogens and by vicinal coupling constants which are matched ($\pm 0.2 \mathrm{~Hz}$) by calculation for this conformation. Thus, the reaction of 2 with a $60: 40$ meso/dl mixture of 2,4 -pentanediols produces only the all-cis product, 7, from the meso-diol. This is easily separated from the dl -diol derived racemic dioxane, 8 , by chromatography ($\mathrm{SiO}_{2}, \mathrm{C}_{6} \mathrm{H}_{14}$) to obtain both isomers in pure form in yields of 29% and 57%, respectively. Similarly, ($2 R, 4 R$)-(-)-2,4-pentanediol gave the interesting optically active acetal $(+)-8\left(78 \%,[\alpha]^{26} \mathrm{D}=\right.$ $+29.6^{\circ}$ (neat)) (Figure 1).

E

7

The reduction of 2 is easily accomplished with borane/dimethyl sulfide complex (BMS) ($1: 1$) in THF (1 h , room temperature) to afford pure TIPSCH2OH (9) in 75% yield. Virtually quantitative conversion to 9 ($\geq 95 \%$) was observed by GC with BMS, LiAlH_{4}, and NaBH_{4} as well as with EtMgBr and $n-\mathrm{BuMgBr}$. By contrast, $\mathrm{Li}(n-\mathrm{Bu})$ gives the expected addition product 10a (R $=n-\mathrm{Bu}, 78 \%$ (100% GC yield)). LiMe produces $10 \mathrm{~b}(\mathrm{R}=\mathrm{Me}$, $\mathbf{7 8 \%}$ ($84 \% \mathrm{GC}$ yield) more efficiently than does MeMgBr (65% GC yield). Grignard reagents lacking a β-hydride source also give 10 (c, $\mathrm{R}=\mathrm{Ph}, 80 \%$; d, $\mathrm{R}=\mathrm{C} \equiv \mathrm{CPr}, 74 \%$).

To illustrate that $\mathbf{2}$ also undergoes the very highly stereoselective reactions which are common for bulky aldehydes, the Wittig olefination of 2 was examined under salt-free conditions, ${ }^{15}$ which gave the $c i s$-vinylsilane (11) $(78 \%, 98 \% Z){ }^{16}$ Also, the aldol reaction of 2 with the Z lithium enolate of propiophenone ${ }^{17}$ produced the expected syn-aldol adduct (12) $\left(65 \%,>97 \%\right.$ syn). ${ }^{18}$

12

[^0]With these developments, formylsilanes emerge from their status as transient intermediates and laboratory curiosities to that of a rich new source of silicon-containing compounds.

Acknowledgment. We are grateful to the NSF (EPSCoR, Puerto Rico) and the Department of Education for support of this work and to Professor Robert West for his encouragement to pursue this study. We also extend our appreciation to Dr. Charles L. Barnes (University of Missouri at Columbia) for determining the solid-state structure of $\mathbf{4 b}$.

Supplementary Material Available: Listings of detailed procedures and complete spectral data for compounds 1-12 (14 pages). Ordering information is given on any current masthead page.
(18) For $12,{ }^{3} J_{\mathrm{H}(2) \mathrm{H}(3)}=1.3 \mathrm{~Hz}(\delta 3.66,4.19)$, which agrees well with the MMX-derived value for the syn (0.3 Hz) rather than the anti (12.8 Hz) isomer. ${ }^{17 \mathrm{~b}}$ Enolate to 2 addition at $-78^{\circ} \mathrm{C}$ gives a single aldol product (${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 206.6,135.5,133.2,128.7,128.3,64.1,42.0,19.0,18.98$, $13.4,11.1 \mathrm{ppm}$), whereas the reverse addition gives minor amounts of the anti isomer ($\delta 206.2,43.7,66.0,13.5,11.2 \mathrm{ppm}$) as well as recovered PhCOEt .

A de Novo Designed Protein Shows a Thermally Induced Transition from a Native to a Molten Globule-ike State

Daniel P. Raleigh and William F. DeGrado*

The Du Pont Merck Pharmaceutical Company Du Pont Experimental Station P.O. Box 80328, Wilmington
Delaware 19880-0328
Received September 2, 1992

The de novo design of peptides and proteins ${ }^{1}$ with predetermined structures provides an important test of our understanding of the principles that govern protein stability and folding. Several designed peptides and proteins have been described, ${ }^{2,3}$ but the design of a compact, globular protein that shows all the hallmarks of a native protein has not yet been reported; instead, many of the designed proteins appear to adopt folded states with loosely packed hydrophobic cores such as those found in molten globules or compact intermediates (CI). ${ }^{1,4}$ In this communication we describe

[^1]A)

B)

Figure 2. The upfield region of the NMR spectrum of $\alpha_{2} \mathrm{C}$ as a function of temperature. The temperature is listed next to each spectrum. All spectra were recorded in $\mathrm{D}_{2} \mathrm{O}$ at pH 7.0 on a Bruker AMX $600-\mathrm{MHz}$ spectrometer using weak irradiation to saturate residual HOD. The peptide concentration was 1 mM , and the spectrum is independent of concentration over the range studied ($80 \mu \mathrm{M}-4 \mathrm{mM}$). Chemical shifts are given in parts per million from TMS.
spectrum shows several weak bands at this temperature. At 313 K the CD bands are lost, indicating that the aromatic side chains have undergone a transition from an asymmetric to a more averaged environment. In contrast, the helical content of the peptide is almost independent of temperature over the range $273-308 \mathrm{~K}$, as judged by the mean residue ellipticity at 222 nm , which varies by less than 12%.
Below room temperature, the NMR spectrum is reminiscent of a folded, tightly packed protein, while above room temperature, the spectrum resembles that typically observed for molten globules (Figure 2). At low temperature, the spectrum is well dispersed and a number of ring-current-shifted methyl resonances are visible between 0 and 1.3 ppm . As the temperature is raised, these resonances decrease in intensity, and above 298 K , they all fall within a broad envelope centered near the random coil value. Parallel changes are observed in the aromatic region. Van't Hoff analysis of the NMR data, assuming a two-state transition, yields an enthalpy of $60 \pm 20 \mathrm{kcal} \mathrm{mol}^{-1}$. Although the observed transition may be more complicated than a simple two-state model would imply, the calculated value of ΔH is in reasonable agreement with the values reported for the unfolding transition of natural proteins. ${ }^{9}$

These results clearly demonstrate that $\alpha_{2} \mathrm{C}$ has many of the characteristics of native proteins such as α-lactalbumin, including a cooperative thermal transition between a native-like state at low temperatures and a molten globule-like state at higher temperatures. ${ }^{4}$ It is interesting to note that $\alpha_{2} \mathrm{C}$ assembles into a protein with a structure approximately as complex as a simple protein such as intestinal calcium-binding protein, which has a C_{2}-symmetric four-helix structure arising from gene duplication of a two-helix motif. ${ }^{10} \quad \alpha_{2} \mathrm{C}$ retains two properties that are not entirely

[^2] istry 1992, 31, 3597-3603.
consistent with the native state: (1) it binds δ-anilino-1naphthalenesulfonate with a dissociation constant of approximately $50 \mu \mathrm{M}$; (2) the resonances in the proton NMR spectrum are somewhat broader than expected for a protein of this molecular weight, suggesting some mobility or aggregation. These results are not surprising, since only one of the helix/helix interfaces has been optimized. We are therefore working on further optimizing the packing of $\alpha_{2} \mathrm{C}$.

Acknowledgment. We thank Sharon Jackson and Arlene Rockwell for assistance in peptide synthesis and Tracy Handel for helpful discussions.

Supplementary Material Available: Fast atom bombardment mass spectrum of $\alpha_{2} \mathrm{C}$ and plots of the intensity of the resolved methyl resonances in the NMR spectrum of $\alpha_{2} \mathrm{C}$ as a function of temperature and of the intensity of the far-UV CD signal at 222 nm as a function of temperature (3 pages). Ordering information is given on any current masthead page.
(10) (a) Szebenyi, D. M. E.; Moffat, K. J. Biol. Chem. 1986, 261, 8761-8777. (b) Kretsinger, R. H. Cold Spring Harbor Symp. Quant. Biol. 1987, 52, 411.

Total Synthesis of Kuanoniamines and Dercitins

Michael J. Bishop ${ }^{1}$ and Marco A. Ciufolini ${ }^{*}$
Department of Chemistry, Rice University
P.O. Box 1892, Houston, Texas 77251

Received September 3, 1992
Kuanoniamines B-D (1-3) ${ }^{2}$ and dercitins $(4,5)^{3}$ are structurally unique, highly cytotoxic thiazolopyridoacridine alkaloids obtained from marine sources (Scheme I). ${ }^{4}$ Interestingly, the moderate potency observed for kuanoniamines is greatly enhanced in 5 , which exhibits not only strong antitumor activity in vitro and in vivo but also immunosuppressive and antiviral properties. ${ }^{5}$ It should be noted that materials structurally related to 1-5 are known to be inhibitors of reverse transcriptase, ${ }^{6}$ raising the possibility that kuanoniamines and dercitins may be active against HIV. Indeed, a recent report provides some support for this hypothesis. ${ }^{7}$

[^3]Scheme I

5
$\mathrm{Z}=i$ - BuCONH
$Z=E t C O N H$
$Z=M e C O N H$
$\mathrm{Z}=\mathrm{NMe}_{2}$

The new alkaloids are very rare substances, and in any event their compact aromatic framework does not lend itself to modification for the purpose of SAR studies. No synthetic approaches to this class of alkaloids are known. ${ }^{8}$ Furthermore, the structure of 5 was originally misassigned and later corrected. ${ }^{3}$ These problems conspire to seriously complicate any further investigation of the potentially important biological properties of 1-5. In light of these facts, we launched a synthetic program with the intent of solving such problems. This effort has now culminated with the first total synthesis of 3-5, as described below.

Construction of the ring system of $1-5$ relied on the application of our pyridine-forming reaction as a key step. ${ }^{9}$ Thus, ytterbi-um(III)-mediated cycloaddition of ethyl vinyl ether to enone 6 and treatment of the intermediate adduct with $\mathrm{HONH}_{2} \cdot \mathrm{HCl}$ in MeCN at reflux furnished the pyridine 7, which was converted to ketone 8 (Scheme II). ${ }^{10}$ It was anticipated that the thiazole unit would be most readily installed at the stage of 8 . Indeed, bromination of the α-position of the carbonyl group (pyridinium tribromide) ${ }^{11}$ and Traumann reaction ${ }^{13}$ of crude 9^{12} furnished the expected aminothiazole 10 , which was efficiently deaminated ${ }^{14}$ to the desired 11. ${ }^{15}$ Cleavage of the acetate gave alcohol 12, from which mesylate 13 was obtained quantitatively. The routes to dercitins and kuanoniamines diverged at this point.

Kuanoniamine D (3), an especially active member of the omonimous family, was selected as our primary target. Thus, the mesylate 13 was advanced to amide 16 (Scheme III), from which totally synthetic 3^{15} was secured in a single step and in 62% chromatographed yield by triplet-sensitized photolysis (acetophenone, 150-W Sylvania sunlamp, Pyrex) ${ }^{16}$ of the aromatic azide. This reaction proceeded with in situ oxidation of the primary photoproduct 17, presumably through H -atom transfer to photoexcited acetophenone. The overall yield of 3^{17} from 6 was 10.0% over 12 steps.

[^4]
[^0]: (13) Soderquist, J. A.; Miranda, E. I. Tetrahedron Lett. 1986, 27, 6305.
 (14) Taylor, E. C.; Chiang, C. Synthesis 1977, 467.
 (15) Vedejs, E.; Meier, G. P.; Snoble, K. A. J. J. Am. Chem. Soc. 1981, 103, 2823. See also: Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863 and references cited therein.
 (16) $\mathrm{Ph}_{3} \mathrm{PCHPr}$ in $\mathrm{PhMe}{ }^{15}$ was less efficient (61%) and selective ($\mathrm{c} / \mathrm{t}=$ 96:4 by capillary GC) perhaps due to trace amounts of Li-containing impurities. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ cis-11 $\delta 150.50,123.14,36.92,22.97,18.89$, 14.02, 12.20 ppm . trans-11 $\delta 149.33,123.55,39.51,22.16,18.65,13.59,12.36$ ppm.
 (17) (a) House, H. O.; Phillips, M. V.; Sayer, T. S. B.; Yan, C.-C. J. Org. Chem. 1978, 43, 700. (b) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066.

[^1]: * Author to whom correspondence should be addressed.
 (1) DeGrado, W. F.; Raleigh, D. P.; Handel, T. M. Curr. Opin. Struct. Biol. 1991, 1, 984-993.
 (2) (a) DeGrado, W. F.; Wasserman, Z. R.; Lear, J. D. Science 1989, 243, 622-628. (b) Ho, S. W.; DeGrado, W. F. J. Am. Chem. Soc. 1987, 109 , 6751-6758. (c) Regan, L.; DeGrado, W. F. Science 1988, 241, 976-978. (d) Handel, T. M.; DeGrado, W. F. J. Am. Chem. Soc. 1990, 112, 6710-6711. (e) Osterhout, J. L.; Handel, T. M.; Na, G.; Toumadje, A.; Long, R. C.; Connolly, P. J.; Hoch, J. C.; Johnson, W. C.; Live, D.; DeGrado, W. F. J. Am. Chem. Soc. 1992, 114, 331-337.
 (3) (a) Moser, R. M.; Thomas, B.; Gutte, B. FEBS Lett. 1983, 157, 247-251. (b) Richardson, J. S.; Richardson, D. C. Trends Biochem. Sci. 1989, 304-309. (c) Morii, H.; Ichimura, K.; Uedaira, H. Chem. Lett. 1990, 1987-1990. (d) Johnsson, K.; Allemann, R. K.; Benner, S. A. In Molecular Mechanisms in Bioorganic Processes; Bleasdale, C., Golding, B. T., Eds.; Royal Society of Chemistry: Cambridge, 1990; pp 166-187. (e) Goraj, K.; Renard, A.; Martial, J. A. Protein Eng. 1990, 3, 259-266. (f) Regan, L.; Clark, N. D. Biochemistry 1990, 29, 10878-10883. (g) Hahn, K. W.; Klis, W. A.; Stewart, J. M. Science 1990, 248, 1544-1547. (h) Kaumaya, P. T.; Berndt, K. D.; Heidorn, D. B.; Trewhella, J.; Kezdy, J. F.; Goldberg, E. Biochemistry 1990, 29, 13-23. (i) Hecht, M. H.; Richardson, J. S.; Richardson, D. C.; Ogden, R. C. Science 1990, 249, 884-891. (j) Klauser, S.; Gantner, D.; Salgam, P.; Gutte, B. Biochem. Biophys. Res. Commun. 1991, 179, 1212-1219. (k) Ghadiri, R. M.; Soares, C.; Choi, C. J. Am. Chem. Soc. 1992, 114, 825-831. (1) Chin, T.-M.; Berndt, K. D.; Yang, N.-C. J. Am. Chem. Soc. 1992, 114, 2279-2280. (m) Zhou, N. E.; Kay, C. M.; Hodges, R. S. J. Biol. Chem. 1992, 267, 264-267.

[^2]: (9) Alexander, P.; Fahnestock, S.; Lee, T.; Orban, J.; Bryan, P. Biochem-

[^3]: (1) Recipient of the Robert A. Welch Predoctoral Fellowship.
 (2) Carroll, A. R.; Scheuer, P. J. J. Org. Chem. 1990, 55, 4426.
 (3) Dercitin: (a) Gunawardana, G. P.; Kohmoto, S.; Gunasekara, S. P.; McConnell, O. J.; Koehn, F. E. J. Am. Chem. Soc. 1988, 110, 4856. Nordercitin: (b) Gunawardana, G. P.; Komoto, S.; Burres, N. S. Tetrahedron Lett. 1989, 30, 4359. (c) Gunawardana, G. P.; Koehn, F. E.; Lee, A. Y.; Clardy, J.; He, H.-Y.; Faulkner, J. D. J. Org. Chem. 1992, 57, 1523 (revised structures).
 (4) Related alkaloids. Cystodytins: Kobayashi, J. I.; Cheng, J.-F.; Wälchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Org. Chem. 1988, 53, 1800, and ref 10. Diplamine: Charyulu, G. A.; McKee, T. C.; Ireland, C. M. Tetrahedron Lett. 1989, 30, 4201. Veramine: Molinski, T. F.; Ireland, C. M. J. Org. Chem. 1989, 54, 4256. Shermilamines: Carroll, A. R.; Cooray, N. M.; Poiner, A.; Scheuer, P. J. J. Org. Chem. 1989, 54, 4231. Segolines: Rudi, A.; Kashman, Y. J. Org. Chem. 1989, 54, 5331. Ascidemnin: Kobayashi, J. I.; Cheng, J. F.; Nakamura, H.; Ohizumi, Y.; Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. Tetrahedron Lett. 1988, 29, 1177. Leptoclinidinones: DeGuzman, F. S.; Schmitz, F. J. Tetrahedron Lett. 1989, 30, 1069. Plakinidines: West, R. R.; Mayne, C. L.; Ireland, C. M.; Brinen, L. S.; Clardy, J. Tetrahedron Lett. 1990, 31, 3271. Amphimedin: Schmitz, F. J.; Agarwal, S. K.; Gunasekara, S. P.; Schmidt, P. G.; Schoolery, J. N. J. Am. Chem. Soc. 1983, 105, 4835. For an excellent review, see: Kobayashi, J.-I.; Ishibashi, M. In The Alkaloids; Brossi, A., Cordell, G. A., Eds.; Academic Press: San Diego, CA, 1992; Vol. 41, Chapter 2.
 (5) Kuanoniamine D, a particularly active member of the family, shows an IC_{50} value against KB cells equal to $1.0 \mu \mathrm{~g} / \mathrm{mL}$ (ref 2). Reported data against P388 leukemia for dercitin are as follows: $\mathrm{IC}_{50}=50 \mathrm{ng} / \mathrm{mL} ; \mathrm{T} / \mathrm{C}$ $=170 \%$ at $5 \mathrm{mg} / \mathrm{kg}$. Immunosuppressant activity: 0% murine MLR at 10 $\mathrm{ng} / \mathrm{mL}$. Antiviral activity: strong inhibition of Herpes simplex I at $5 \mu \mathrm{~g} / \mathrm{well}$ with moderate cytotoxicity; complete inhibition of murine A59 coronavirus at $1 \mu \mathrm{~g} /$ well with no cytotoxicity (ref 3).
 (6) Inouye, Y.; Take, Y.; Oogose, K.; Kubo, A.; Nakamura, S. J. Antibiot. 1987, 40, 105.

[^4]: (7) Taraporewala, I. B.; Cessac, J. W.; Chanh, T. C.; Delgado, A. V.; Schinazi, R. F. J. Med. Chem. 1992, 35, 2477.
 (8) Preparation of thiazolo[5,4a]acridine substructures related to 1-5: Barbe, J.; Boyer, G.; Carignano, I.; Elguero, J.; Galy, J.-P.; Morel, S.; Oughedani, R. Tetrahedron Lett. 1991, 32, 6709.
 (9) Ciufolini, M. A.; Byrne, N. E. J. Chem. Soc., Chem. Commun. 1988, 1230.
 (10) Ciufolini, M. A.; Byrne, N. E. J. Am. Chem. Soc. 1991, 113, 8016. Compounds 8-16 and 18-19 emerged as $1: 1$ mixtures of diastereomeric rotamers as a result of axial dissymetry caused by restricted rotation of the azidophenyl group.
 (11) Cf. Kornfeld, E. C.; Fornefeld, E. J.; Kline, B.; Mann, M. J.; Morrison, D. E.; Jones, R. G.; Woodward, R. B. J. Am. Chem. Soc. 1956, 78, 3087.
 (12) This material is difficult to purify because of its propensity to undergo aromatization (-HBr).
 (13) Traumann, V. Liebigs Ann. Chem. 1888, 249, 31.
 (14) Cf. Doyle, M. P.; Dellaria, J. F., Jr.; Siegfrid, B.; Bishop, S. W. J. Org. Chem. 1977, 42, 3494.
 (15) Melting points of selected compounds (uncorrected): 11, mp 163-164 ${ }^{\circ} \mathrm{C}$; synthetic 3, yellow microcrystals changing to red-violet in acidic medium, decomposed at $260^{\circ} \mathrm{C}$ without melting, $1 \mathrm{lit} .^{2} \mathrm{mp}>300^{\circ} \mathrm{C}$; synthetic 4 , yellow microcrystals changing to red-violet in acidic medium, mp $177-179^{\circ} \mathrm{C}$, lit. ${ }^{3}$ $\operatorname{mp} 176^{\circ} \mathrm{C} ; 19,167-168^{\circ} \mathrm{C} ; 20,171-172^{\circ} \mathrm{C} ; 21,170-171^{\circ} \mathrm{C}$; synthetic 5 , purple microcrystals changing to red in acidic medium, mp $165-167^{\circ} \mathrm{C}$, lit. ${ }^{3}$ $\mathrm{mp} 168^{\circ} \mathrm{C}$.
 (16) (a) Lindley, J. M.; McRobbie, I. M.; Meth-Cohn, O.; Suschitzsky, H. Tetrahedron Lett. 1976, 17, 4513. (b) Lindley, J. M.; McRobbie, I. M.; Meth-Cohn, O.; Suschitzsky, H. J. Chem. Soc., Perkin Trans. 1 1977, 2194. See also ref 10 .
 (17) The spectral data for this synthetic material, including HRMS measurements, were in complete agreement with the literature. Unfortunately, we were unable to obtain an authentic sample of the natural product for the purpose of direct comparison.

